
Pico Stack PSS1

Windows Development Version

Users Manual

PICO Stack Windows Development Version Users Manual

1

Table of Contents

1 Introduction ..2
2 System Requirements ...2
3 Installation..3

3.1 List of Files...3
4 Connecting, Disconnecting and Data Transfer...4
5 DLL Functions ...5

5.1 DLL Overview..5
5.2 Naming Conventions..5
5.3 Argument handling in callbacks...5
5.4 Initialisation..5
5.5 Local Configuration and Status Functions ...6
5.6 Device Search...7
5.7 Service Search ..8
5.8 Pairing ..8

6 Callback Functions...9
7 Structures..11
8 Revision History...13

PICO Stack Windows Development Version Users Manual

2

1 Introduction
The PICO Stack Bluetooth Software for Windows developer kit allows application
programmers to access the configuration functions of the PICO Stack directly by using a
standard windows DLL, thus replacing the Bluetooth Monitor user interface.

2 System Requirements
Supported operating systems are Windows NT, Windows 2000 and Windows XP. The
Bluetooth Hardware (PicoCard, PicoPCI or any USB Bluetooth Adapter supported by G&W
Instruments PICO USB Stack) and the appropriate drivers must be installed before using this
software.
To use the DLL interface the Bluetooth Monitor must be stopped, because the configuration
interface of the Bluetooth stack can no be multiplexed between applications. For information
on how to stop and restart the Bluetooth Monitor see section Installation.

PICO Stack Windows Development Version Users Manual

3

3 Installation
The developers kit consists of a standard Windows DLL with an accompanying export
library, C language header files and a C command line demonstration program. To use the
DLL it must be copied into a directory which is included in the search path (e.g.
c:\windows\system32) or the applications installation directory.

To test the DLL interface copy all files provided to a separate directory. It is assumed that the
PICO Bluetooth software is already installed and the Bluetooth Monitor program is running.
Than open a command line window and change to the installation directory. At the command
prompt type
c:\PicoLib\>net stop btmonitor
to stop the Bluetooth monitor. Than run the test program
c:\PicoLib\>PicoConfigTest
This will give you a list of available options. You can do inquiries, name request, service
requests and more.
To restart the Bluetooth monitor program type
c:\PicoLib\>net start btmonitor

3.1 List of Files
PicoConfig.dll The Interface DLL
PicoConfig.lib DLL Export Library

PicoIf.h Main Include File, defines structures and functions used by the DLL
Meta.h Basic Type Definitions
ErrorCodes.h Definitions for error codes
ServiceDc.h Structures and definitions for service requests

PicoConfigTest.exe DLL test program (Windows command line application)
PicoConfigTest.c Source code of test program
MakeTestProg.bat Script to compile test program (requires MS C-compiler)

More programming examples can be found in the subdirectory examples.

PICO Stack Windows Development Version Users Manual

4

4 Connecting, Disconnecting and Data Transfer
To connect to or disconnect from a remote device simply open / close the associated COM
port from your application. When opening a Bluetooth virtual Com port, the Bluetooth stack
will automatically connect to the installed remote device (see SetBTPeer()).

If the connection fails (e.g. because the remote device is out of range) the open() call will fail.
However, this standard behaviour may be changed by setting the special registry key

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\BtDriver\Devices\COMM\X\
CreateAlwaysSucceeds

where "X" is to be replaced with the port number minus 1 (e.g. for COM3 X=2).If this binary
(1 Byte) key exists and is set to one the port open will succeed even if the connection could
not be made. The Bluetooth stack will try to create the connection each time it receives a
write request to the virtual port.

To create a virtual COM port you must use the Bluetooth Monitor and either install a remote
device or a local service.

If you use a port installed as a local service and do not set its peer address, no connection is
made when the port is opened. Instead, once you have opened the port, the service will be
visible to other Bluetooth devices and the Bluetooth stack will wait for a connection from a
remote device.

If you have a port with a valid peer address and want to use it as a local service, you can set
the peer address to 0xFF-0xFF-0xFF-0xFF-0xFF-0xFF. This address is interpreted by the
Bluetooth stack as an invalid address and it will not try to connect to this address. Instead, it
will wait for a connection from a remote device.

Data is transferred by simple read / write operations on the virtual COM port. It is strongly
recommended that you use time outs for read and write requests to prevent blocking of your
application in case a connection attempt has failed or the connection broke down.

PICO Stack Windows Development Version Users Manual

5

5 DLL Functions

5.1 DLL Overview
Because most of the functions provided by the DLL do not immediately return a result the
application has to provide callback functions for asynchronous events generated by the
Bluetooth stack. The call-back functions are organised in a single structure that is passed to
the BtInit() function. The structure members must be initialised before BtInit() is called.
Unused callbacks shall be set to NULL. For more information please refer to the example
programs.

5.2 Naming Conventions

BtAskFor… Functions that provide their data in a callback
function

Ci… Bluetoth management functions
Hc… HCI related functions

5.3 Argument handling in callbacks
All arguments that are passed to callback functions as pointers are only valid during the call
of the callback function. The memory of the argument is freed or reused by the PicoConfig
DLL after the callback function returns. The user has to copy the data if it will be used later.

5.4 Initialisation
bool BtInit(const TPicoIfCallbacks *cb)
This function must be called before any other DLL function can be used. The caller must
provide a pointer to the array of callback functions. Unused call-backs shall be set to NULL.
This function returns true if initialisation was successful, false otherwise.

Callback: None

bool BtShutdown(void)
Shall be called before terminating the application.

Callback: None

PICO Stack Windows Development Version Users Manual

6

5.5 Local Configuration and Status Functions

u32 BtGetLibraryVersion(void)
Returns a 4 byte value with major_version.minor_version.patch_level.build_number. The
MSB contains the major version number.

Callback: None

void BtAskForStackVersion(void)
Reads the version string of the firmware.

Callback: CiEventFwVersion(const char* Fw)

void BtAskForLocalBD_ADDR(void)
Reads the Bluetooth Device address of the local device.

Callback: HcEventCCReadLocalBD_ADDR(u8 HCI_ErrorCode, const u8 BdAddr[6])

void BtAskForLocalName(void)
Reads the friendly name of the local device. The local name provided in the callback is UTF8
encoded.

Callback: HcEventCCReadLocalName(u8 HCI_ErrorCode, const char* Name)

void BtChangeLocalName(const char *Name)
Sets the friendly name of local device. Name must not exceed 248 bytes in length and must be
UTF8 (see www.unicode.org) encoded. (UTF8: in the simplest case use plain ASCII)

Callback: None

bool SetBTPeer(const char * ComName, const u8* BdAddr, u8 SCN)
Install the remote device with address BdAddr as peer in port ComName. The port must
already exist. The new peer address will be used at the next open / create and stored in the
system registry.
Returns true on success, false otherwise.
ComName 0 terminated string, the format is "comN" or "\\.\comN"
BdAddr 6 byte binary bluetooth address as returned by an inquiry callback.
SCN Service Channel Number of remote RFCOMM, this is returned by a service

search in TSPPInfo.

Callback: None

unsigned int GetNumberOfInstalledCOMPorts(void)
Returns the number of installed Bluetooth virtual ports.

Callback: None

PICO Stack Windows Development Version Users Manual

7

bool GetFirstInstalledCOMPort(char* buf, unsigned int* buf_len)
bool GetNextInstalledCOMPort (char* buf, unsigned int* buf_len)
IN/OUT: char* buf;

char buffer that is filled with the COM name, string will be 0 terminated
COM name is in the format \\.\COMx

IN/OUT: unsigned int* buf_len
must be set to sizeof(buf) before calling.
set to actual length of COM name WITHOUT 0 byte

Returns false on failure / first illegal

Callback: None

void BtAskForActiveStatus(void)
Call BtAskForActiveStatus to check whether there is a Baseband connection or an Inquiry
active which makes it impossible to open another Baseband connection when using
SinglePoint Bluetooth hardware.

Callback: CiEventBasebandActive(bool IsActive)

5.6 Device Search

void BtStartInquiry(u8 InqDuration)
Starts an Inquiry with length of InqDuration seconds. Within this time the Bluetooth stack
will send Inquiry Result Events for each remote device found. There may be multiple events
for the same device. When the Inquiry is finished an InquiryComplete callback will be issued.

Callbacks: HcEventInquiryComplete(u8 HCI_ErrorCode)
HcEventInquiryResult(u8 BdAddr[6], u8 PSRM, u8 PSN, u8 CoD[3],
u16 CO)

void BtAskForRemoteName(u8 BdAddr[6])
void BtAskForRemoteNameEx(u8 BdAddr[6],u8 PSRM,u8 PSM,u16 CO)
Requests the friendly name of the remote devices specified by BdAddr.
BdAddr: Bluetooth Device Address of remote device
PSRM: PageScanRepetitionMode, obtained from Inquiry Result Event, otherwise: 0
PSM: PageScanMode, obtained from Inquiry Result Event, otherwise: 0
CO: ClockOffset, obtained from Inquiry Result Event, otherwise: 0

Callback: HcEventRemoteNameRequestComplete(u8 HCI_ErrorCode,
const u8 BdAddr[6], const char* Name)

PICO Stack Windows Development Version Users Manual

8

5.7 Service Search

void BtAskForSDPRecords(u8 BdAddr[6],u8 *uuid128)
void BtAskForAllSDPRecords(u8 BdAddr[6])

Requests the services from the remote Bluetooth device with the address BdAddr. The
CiEventServiceResult callback will be called for each service offered by the given device. If
the first form is used only the services with the UUID given will be requested, if the second
form is used, all services will be requested. See Bluetooth Assigned Numbers for service
UUIDs.
BdAddr: Bluetooth Device Address of remote device.
uuid128 UUID of service requested.

Callbacks: CiEventServiceResult(TServiceDescription*)
CiEventServiceComplete(const u8 BdAddr[6], u16 ErrorCode)

5.8 Pairing

void BtStartRfTestCon(u8 BdAddr[6],u8 SCN, bool DoAuthenticate)

Initiates a RFCOMM connections to the specified device and service channel. A PIN request
might occur before the callback is called either if the remote device requires authentication or
DoAuthenticate is true.
BdAddr: Bluetooth Device Address of remote device.
SCN Server channel number as returned by CiEventServiceResult.
DoAuthenticate Set to TRUE if you want authentication.

Callback: CiEventRfTestConComplete(U8 BdAddr, u8 SCN, u16 ErrorCode)
HcEventPINRequest(const u8 BdAddr[6], char PIN[16+1])

PICO Stack Windows Development Version Users Manual

9

6 Callback Functions

u16 Reserved(u16 p1, const u8 *p2)
Not used, shall be set to NULL in callback structure.

void CiEventBasebandActive(bool IsActive)
Called as a result of calling BtAskForActiveStatus().
IsActive TRUE if the is any base-band activity, FALSE otherwise

void CiEventFwVersion(const char *Fw)
Called as a result of calling BtAskForStackVersion().
*Fw pointer to zero terminated string identifying the firmware version of the base-

band chip used. Contents depends on base-band hardware used. May be empty.

void CiEventError(u8 Errno)
Called in the event any error has occurred.
Errno Error number as defined in ErrorCodes.h.

void HcEventInquiryComplete(u8 HCI_ErrorCode)
Called when an inquiry has been completed.
HCI_Error Code Error code as defined in ErrorCodes.h. HCI_ERROR_NO_ERROR on

success.

void HcEventInquiryResult (const u8 BdAddr[6], u8 PSRM, u8 PSPM, u8 PSM, u8
CoD[3], u16 CO)

Called for each device found during an inquiry. Depending on base-band hardware used, this
callback may be called more than once for a single device.
BdAddr Bluetooth Address of the device
PSRM Page Scan Repetition Mode
PSM Page Scan Mode
CoD Class of Device, see Bluetooth Assigned Numbers for device class description.
CO Clock Offset

void HcEventRemoteNameReqComplete (u8 HCI_ErrorCode, const u8 BdAddr[6],
const char *Name)

Called as a result of calling BtAskForRemoteName().
HCI_Error Code Error code as defined in ErrorCodes.h. HCI_ERROR_NO_ERROR on

success. Name and BdAddr may be invalid otherwise.
BdAddr Bluetooth Address of device.
*Name Pointer to a zero terminated UTF-8 encoded string holding the name of

the remote device.

PICO Stack Windows Development Version Users Manual

10

bool HcEventPINRequest(const u8 BdAddr[6], char PIN[16+1])
This function is called if a connection or pairing attempt is made and the remote device
requires authentication (and the device is not already paired). Return true if a valid PIN code
is supplied in PIN or false if not. In the latter case the pairing attempt will fail.
BdAddr Bluetooth address of remote device.
PIN Pointer to a buffer where the PIN code is to be returned. The PIN code is a zero

terminated string with a maximum of 16 characters.

void HcEventCCReadLocalBD_ADDR(u8 HCI_ErrorCode, const u8 BdAddr[6])
Called as a result of calling BtAskForLocalBD_ADDR (.).
HCI_Error Code Error code as defined in ErrorCodes.h. HCI_ERROR_NO_ERROR on

success. BdAddr may be invalid otherwise.
BdAddr Bluetooth address of local device.

void HcEventCCReadLocalName (u8 HCI_ErrorCode, const char *Name)
Called as a result of calling BtAskForLocalName(.).
HCI_Error Code Error code as defined in ErrorCodes.h. HCI_ERROR_NO_ERROR on

success. Name may be invalid otherwise.
*Name Pointer to a zero terminated string (UTF8 encoded).

void Reserved2(u8 HCI_ErrorCode, const char *Version)
Not used, shall be set to NULL in callback structure.

void HcEventCCSetClassOfDevice (u8 HCI_ErrorCode)
Currently not used, shall be set to NULL in callback structure.

void HcEventCCReadClassOfDevice(u8 HCI_ErrorCode, const u8 CoD[3])
Currently not used, shall be set to NULL in callback structure.

void CiEventRfTestConComplete(const u8 BdAddr[6], u8 SCN, u16 ErrorCode)
Called as a result of a pairing request BtStartRfTestCon()
BdAddr Bluetooth address of remote device.
SCN Remote device server channel number.
ErrorCode ErrorCode as defined in ErrorCodes.h. BT_NO_ERROR on success.

void CiEventServiceResult(TServiceDescription *sd)
Called for every service descriptor found on a remote device
*sd Pointer to a data structure of type TServiceDescription.

void CiEventServiceComplete(const u8 BdAddr[6], u16 ErrorCode)
Called after all services from a remote device have been requested.
BdAddr Bluetooth address of remote device.
ErrorCode ErrorCode as defined in ErrorCodes.h. BT_NO_ERROR on success.

PICO Stack Windows Development Version Users Manual

11

7 Structures

TPicoIfCallbacks

A structure of this type must be allocated and initialised by the application before the BtInit()
function is called. It holds the pointers to the callback functions used by the DLL to inform
the application about asynchronous events. Unused callback functions shall be set to NULL.
The structure member CallbackLength shall be set to the size of the structure (in bytes).

typedef struct {
u32 CallbackLength;
u16 (*Reserved)(u16 p1, const u8 *p2);
void (*CiEventBasebandActive)(bool IsActive);
void (*CiEventFwVersion)(const char *Fw);
void (*CiEventError)(u8 Errno);
void (*HcEventInquiryComplete)(u8 HCI_ErrorCode);
void (*HcEventInquiryResult)(const u8 BdAddr[6], u8 PSRM, u8 PSPM, u8 PSM,

u8 CoD[3], u16 CO);
void (*HcEventRemoteNameReqComplete)(u8 HCI_ErrorCode, const u8

BdAddr[6], const char *Name);
bool (*HcEventPINRequest)(const u8 BdAddr[6], char PIN[16+1]);
void (*HcEventCCReadLocalBD_ADDR) (u8 HCI_ErrorCode, const u8

BdAddr[6]);
void (*HcEventCCReadLocalName) (u8 HCI_ErrorCode, const char *Name);
void (*Reserved2) (u8 HCI_ErrorCode, const char *Version);
void (*HcEventCCSetClassOfDevice) (u8 HCI_ErrorCode);
void (*HcEventCCReadClassOfDevice)(u8 HCI_ErrorCode, const u8 CoD[3]);
void (*CiEventRfTestConComplete)(const u8 BdAddr[6], u8 SCN, u16

ErrorCode);
void (*CiEventServiceResult)(TServiceDescription *sd);
void (*CiEventServiceComplete)(const u8 BdAddr[6], u16 ErrorCode);

} TPicoIfCallbacks;

PICO Stack Windows Development Version Users Manual

12

TServiceDescription

This structure is returned by the CiEventServiceResult callback and holds all information
about a single service record.

typedef struct {
u32 Version; filled with SDP_SERVICE_DESCRIPTION_VERSION
u8 BdAddr[6]; the Bluetooth address of the remote device
u8 UUID[16]; UUID128 of the service
u16 PSM; L2CAP Protocol Service Multiplexer Number.
char* ServiceName; Name of the service
char* ServiceDescription; Verbose descritpion of service
char* ProviderName;

TSDPServiceType ServiceType; selects union element, can be one of the
following enum types:
ST_unknown
ST_SPP serial port profile
ST_HCRP HCRP
ST_ObjPush, OBEX Objext Push
ST_ObexFileTransfer OBEX file transfer

union {
TSPPInfo spp;
THCRPInfo hcrp;
TobjPushInfo obpush;
TObjexFileTransferInfo obexft;

} u;
}

Note that services based on the Bluetooth profiles Dial Up Networking, Lan Access or Fax
will return a Serial Port Profile type service description but different UUIDs.

For more information see ServiceDC.h.

PICO Stack Windows Development Version Users Manual

13

8 Revision History

Revision Date Description
1.0 Oct. 1, 2003 Initial Version

